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ABSTRACT

We determine here the structure of the title groups. All such groups G

will be given in terms of generators and relations, and many important

subgroups of these groups will be described. Let d(G) be the minimal

number of generators of G. We have here d(G) ≤ 3 and if d(G) = 3, then

G′ is elementary abelian of order at most 4.

Suppose d(G) = 2. Then G′ is abelian of rank ≤ 2 and G/G′ is abelian

of type (2, 2m), m ≥ 2. If G′ has no cyclic subgroup of index 2, then

m = 2. If G′ is noncyclic and G/Φ(G′) has no normal elementary abelian

subgroup of order 8, then G′ has a cyclic subgroup of index 2 and m = 2.

But the most important result is that for all such groups (with d(G) = 2)

we have G = AB, for suitable cyclic subgroups A and B.

Conversely, if G = AB is a finite nonmetacyclic 2-group, where A and

B are cyclic, then G has exactly one nonmetacyclic maximal subgroup.

Hence, in this paper the nonmetacyclic 2-groups which are products of two

cyclic subgroups are completely determined. This solves a long-standing

problem studied from 1953 to 1956 by B. Huppert, N. Itô and A. Ohara.

Note that if G = AB is a finite p-group, p > 2, where A and B are cyclic,

then G is necessarily metacyclic (Huppert [4]). Hence, we have solved here

problem Nr. 776 from Berkovich [1].

Received June 27, 2006 and in revised form January 05, 2007

313



314 ZVONIMIR JANKO Isr. J. Math.

1. Introduction

Let G be a nonmetacyclic finite 2-group. If all maximal subgroups of G are

metacyclic, then G is minimal nonmetacyclic and then d(G) = 3, |G| ≤ 25, and

there are exactly four such groups (see [3, Theorem 7.1]).

It is natural to ask what happens if all maximal subgroups except one are

metacyclic. In that case the situation is essentially more complicated, since

there exist many infinite classes of such finite 2-groups.

We determine here the structure of all finite 2-groups G which have exactly

one nonmetacyclic maximal subgroup. All such groups G will be given in terms

of generators and relations but we shall also describe many important subgroups

of these groups. It is easy to see that we must have d(G) ≤ 3.

If d(G) = 3, then the problem is simpler because in this case the group

G has six metacyclic maximal subgroups. Such groups are given in Theorem

3.8 and we see that there are exactly five infinite classes of these groups. It

is interesting to note that in all such groups the commutator subgroup G′ is

elementary abelian of order ≤ 4.

Now assume d(G) = 2, this is essentially more difficult. In this case we show

that G/G′ is abelian of type (2, 2m), m ≥ 2, and G′ 6= {1} is abelian of rank ≤ 2.

If G has a normal elementary abelian subgroup of order 8, then these groups

are determined in Theorems 4.1 and 4.2. If G has no normal elementary abelian

subgroup of order 8, then many properties of such groups are described in detail

in Theorem 4.3. In fact, this theorem is a key result for further case-to-case

investigations depending on the structure of G′ and G/Φ(G′). It is interesting

to note that if G′ is noncyclic but G/Φ(G′) has no normal elementary abelian

subgroup of order 8, then G′ has a cyclic subgroup of index 2 and m = 2 (i.e.,

G/G′ is abelian of type (2, 4)) and such groups are determined in Theorems

4.6 and 4.7, where we get an exceptional group of order 25 and two infinite

classes. However, if G′ has no cyclic subgroup of index 2, then m = 2, Z(G)

is elementary abelian of order ≤ 4 (Theorem 4.10) and all such groups are

completely determined in Theorems 4.9, 4.11, 4.12, and 4.13 (where we get

infinite classes of groups in each case). If G′ is cyclic or if G′ is noncyclic but G′

has a cyclic subgroup of index 2 and G/Φ(G′) has a normal elementary abelian

subgroup of order 8, then such groups are determined in Theorems 4.4 and

4.8. This exhausts all possibilities. The most impressive result is Corollary 4.5,
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where it is shown that in each case with d(G) = 2 such a group G = AB is a

product of two suitable cyclic subgroups A and B.

The converse of the last result is Theorem 5.1 which was also proved inde-

pendently by Y. Berkovich. There it was proved that if G = AB is a finite

nonmetacyclic 2-group, where A and B are cyclic, then G has exactly one

nonmetacyclic maximal subgroup and so all such groups have been completely

determined in our previous theorems for d(G) = 2.

In each infinite class of 2-groups (given in terms of generators and relations)

we have checked several smallest groups with a computer (coset enumeration

program) and so we have proved that they exist. Actually, we have obtained

faithful permutation representations for these groups.

The groups appearing in Theorems 4.7–4.13 depend on a number of param-

eters. It is clear that two groups that appear in different theorems are noniso-

morphic, but different parameters in the same theorem could give isomorphic

groups. The referee found some isomorphic groups for different choices of pa-

rameters in Theorem 4.7(a) and Theorem 4.8. Similar phenomena occurs in

other theorems of Section 4. Also, the referee noticed that some groups in

these theorems can be obtained as quotients of ones in other theorem. This

means that the isomorphism problem is not solved and an investigation in that

direction could inspire further research.

Finally, it is easily checked that all 2-groups given in our theorems have

exactly one nonmetacyclic maximal subgroup.

We consider only finite p-groups and we use the standard notation. A 2-group

H is said to be an L3-group if H has a normal elementary abelian subgroup E

of order 8 such that H/E is cyclic of order ≥ 4 and Ω1(H) = E. A metacyclic

2-group H is called “ordinary” metacyclic (with respect to A) if H has a cyclic

normal subgroup A such that H/A is cyclic and H centralizes A/f2(A). A

2-group H is said to be a U2-group (with respect to the kernel R) if H has

a normal four-subgroup R such that H/R is of maximal class and if T/R is a

cyclic subgroup of index 2 in H/R, then Ω1(T ) = R. A 2-group H is “powerful”

if H ′ ≤ f2(H).

2. Known results

Our proofs are elementary but they are very involved and therefore we state

here some known results which are used often in this paper.
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Proposition 2.1 ([3, Lemma 1.1(l)]): A p-group G is metacyclic if and only

if Ω2(G) is.

Proposition 2.2 ([3, Lemma 1.1(n)]): A 2-group G is metacyclic if and only

if G and all maximal subgroups of G are generated by two elements.

Proposition 2.3 ([3, Lemma 1.1(o)]): A 2-group G is metacyclic if and only

if the factor-group G/f2(G) is.

Proposition 2.4 (O. Taussky, see [3, Lemma 1.1(s)]): If G is a nonabelian

2-group with |G : G′| = 4, then G is a dihedral, semidihedral or generalized

quaternion. These three series of groups exhaust all 2-groups of maximal class.

Proposition 2.5 (A. Mann, see [3, Lemma 1.1(u)]): If U and V are distinct

maximal subgroups in a p-group G, then |G′ : (U ′V ′)| ≤ p.

Proposition 2.6 (Burnside, see [3, Lemma 1.1(v)]): . Let G be a p-group and

M be a G-invariant subgroup of the Frattini subgroup Φ(G). If Z(M) is cyclic,

then so is M .

Proposition 2.7 ([3, Lemma 1.1(z)]): . If a metacyclic p-group G possesses a

nonabelian subgroup of order p3, then G is of maximal class.

Proposition 2.8 (Rédei, see [3, Lemma 3.1]): Let G be a minimal nonabelian

p-group. Then G = 〈a, b〉, |G′| = p, and Z(G) = Φ(G). The group G is

nonmetacyclic if and only if G′ is a maximal cyclic subgroup of G and in that

case we have

G = 〈a, b |apm

= bpn

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1,

m ≥ n ≥ 1 and if p = 2, then m > 1〉,

where |G| = pm+n+1. If p = 2, then Ω1(G) ∼= E8, where E2s denotes the

elementary abelian group of order 2s.

Proposition 2.9 ([3, Lemma 3.2(a)]): Let G be a p-group. If |G′| = p and

d(G) = 2, then G is minimal nonabelian.

Proposition 2.10 ([6]): A two-generator 2-group is powerful if and only if it

is ordinary metacyclic.

Proposition 2.11 ([6]): Let G = 〈a1, a2, . . . , an〉 be a powerful 2-group. Then

G = 〈a1〉〈a2〉 · · · 〈an〉.
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Proposition 2.12 ([4, Satz 2]): Let G = 〈a〉〈b〉 be a p-group. Then each

subgroup 〈ai〉 of 〈a〉 is permutable with each subgroup 〈bj〉 of 〈b〉. Also, we

have

f1(G) = Φ(G) = 〈ap〉〈bp〉.

Proposition 2.13 ([5, Theorem 1.2]): Let G be a 2-group which does not have

a normal elementary abelian subgroup of order 8. Suppose that G has (at least)

two distinct normal four-subgroups U and V . Then D = UV ∼= D8 (a dihedral

group of order 8) and G = D ∗ C (a central product) with D ∩ C = Z(D) and

C is either cyclic or of maximal class distinct from D8.

Proposition 2.14 ([2, Lemma 5]): Let G be a nonabelian two-generator p-

group. Then G′/K3(G) is cyclic (where K3(G) = [G, G′]). In particular, if R

is a G-invariant subgroup of index p in G′, then R = Φ(G′)K3(G) and so R is

unique.

Proposition 2.15 ([2, Theorem 1]): A nonabelian p-group G is metacyclic if

and only if G/R is metacyclic for some G-invariant subgroup R of index p in

G′.

Proposition 2.16 ([3, Theorem 11.2]): Let G be a nonabelian group of order

2m, m ≥ 5, and exponent 2m−2. Then one of the following holds:

(a) G is an L3-group.

(b) G is a uniquely determined group of order 25 with Ω2(G) ∼= D8 × C2,

where it turns out that G possesses a normal elementary abelian sub-

group of order 8.

(c) G is a U2-group and so G′ is cyclic of index 8 in G.

(d) G is metacyclic.

(e) G = QZ, where Q ∼= Q8 is a normal subgroup of G, Q ∩ Z = Z(Q)

and Z = 〈b〉 ∼= C2m−2 , where b either centralizes Q or b induces on Q

an involutory outer automorphism (in which case m > 5 and Φ(G) =

G′〈a2〉 is noncyclic). In any case, G′ is cyclic of order ≤ 4.

(f) G is a uniquely determined group of order 25 with Ω2(G) = 〈a, b〉× 〈u〉,

where Q = 〈a, b〉 ∼= Q8 and u is an involution. Set 〈z〉 = Z(Q). There

is an element y of order 8 in G such that

y2 = ua, uy = uz, ay = a−1, by = bu.
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Here Φ(G) = 〈y2, u〉 is abelian of type (4, 2) and so d(G) = 2, G′ =

〈u, z〉 ∼= E4, and Z(G) = 〈z〉 ∼= C2.

Proposition 2.17 ([3, Theorem 4.1]): Let G be a nonabelian 2-group with

d(G) = 3 and suppose that each maximal subgroup of G is generated by two

elements. If G is of class 2, then |G| ≤ 26 and we have one of the following

possibilities:

(a) G is a minimal nonmetacyclic group of order ≤ 25.

(b) G is a unique special group of order 25 with E4
∼= Z(G) < Ω1(G) ∼= E8

and all three maximal subgroups containing Ω1(G) are nonmetacyclic

minimal nonabelian.

(c) G is a unique special group of order 26 with E8
∼= Z(G) = Ω1(G) and

all maximal subgroups are nonmetacyclic minimal nonabelian. Here G

is isomorphic to a Sylow 2-subgroup of Sz(8).

Proposition 2.18 ([3, Theorem 4.2]): . Let G be a nonabelian 2-group with

d(G) = 3 and suppose that each maximal subgroup of G is generated with two

elements. If G is of class > 2, then G/K3(G) is isomorphic to the group of order

26 of Proposition 2.17(c).

Proposition 2.19 (P. Roquette [7] and Y. Berkovich [1, Lemma 1.4]): . Let

N be a normal subgroup of a p-group G. If N does not possess a G-invariant

elementary abelian subgroup of order p2, then N is either cyclic or p = 2 and

N is of maximal class.

Proposition 2.20 ([1, Part 1, Introduction, Lemma 4]): Let G be an abelian

p-group. If Z is a cyclic subgroup of G of maximal possible order, it is a direct

factor of G.

3. The case d(G) = 3

We assume in this section that G is a 2-group with exactly one nonmetacyclic

maximal subgroup M and d(G) = 3.

Suppose at the moment that d(M) = 2 so that all maximal subgroups of G

are two-generated. Obviously, M is nonabelian and so G is nonabelian. If G is

of class 2, we may apply Proposition 2.17. It follows that either each maximal

subgroup of G is metacyclic or G has more than one nonmetacyclic maximal

subgroup. This is a contradiction and so G is of class > 2. In that case we
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may apply Proposition 2.18 which implies that all maximal subgroups of G are

nonmetacyclic, a contradiction. Hence d(M) > 2 and considering M ∩F , where

F is a metacyclic maximal subgroup of G, we get d(M) = 3. We have proved

Lemma 3.1: We have d(M) = 3.

Now we shall determine the structure of G/G′. Since G′ ≤ Φ(G), we have

d(G/G′) = 3 and we want to show that G′ < Φ(G). For that purpose we

study the structure of Ḡ = G/Φ(M), where M/Φ(M) ∼= E8 (Lemma 3.1) and

|Φ(G) : Φ(M)| = 2. Here M̄ is elementary abelian of order 8, |Ḡ : M̄ | = 2, and

Φ(Ḡ) = 〈z〉, where z is an involution in M̄ . There is an element a ∈ Ḡ−M̄ such

that a2 = z. Suppose that Ḡ is nonabelian so that Ḡ′ = 〈z〉 and 〈a〉 is normal in

G. We have |M̄ : CM̄ (a)| = 2 and let t ∈ M̄−CM̄ (a) and u ∈ CM̄ (a)−〈z〉 so that

〈a, t〉 ∼= D8 and Ḡ = 〈u〉× 〈a, t〉 ∼= C2 ×D8. But this group has two elementary

abelian subgroups of order 8 (which are maximal in Ḡ), a contradiction. Hence,

Ḡ is abelian (of type (2, 2, 4)) and so G′ ≤ Φ(M), and G/G′ is abelian of type

(2, 2, 2m), m > 1. We have proved

Lemma 3.2: The abelian group G/G′ is of type (2, 2, 2m), m > 1.

On the other hand, abelian groups of type (2, 2, 2m), m > 1, satisfy the

assumptions of this section. Therefore, we assume in the sequel that G′ 6= {1}.

Now suppose that G has a normal elementary abelian subgroup E of order

8. By Lemma 3.2 and our assumption that G is nonabelian, we have |G| ≥ 25.

Since G has exactly one nonmetacyclic maximal subgroup, G/E is cyclic of order

≥ 4. Let a ∈ G − E so that 〈a〉 covers G/E. Then {1} 6= G′ = [E, 〈a〉] < E

and Φ(G) = G′〈a2〉. But d(G) = 3 implies |G′| = 2 and so a induces on E

an automorphism of order 2. In particular, a2 centralizes E and so (since E16

cannot be a subgroup of G) E∩〈a〉 = 〈z〉 is of order 2. Hence Φ(G) = 〈a2〉 ≥ 〈z〉

and so G′ = 〈z〉 and o(a) = 2n, n ≥ 3. We can choose u, v ∈ E so that E =

〈u, v, z〉 with ua = u and va = vz. Then 〈a, v〉 ∼= M2n+1 and G = 〈u〉 × 〈a, v〉 ∼=

C2 × M2n+1, where M2n+1 = 〈a, v | a2n

= v2 = 1, n ≥ 3, [v, a] = a2n−1

〉. The

structure of G is uniquely determined. We have proved

Lemma 3.3: If G′ 6= {1} and G possesses a normal elementary abelian subgroup

of order 8, then G ∼= C2 × M2n+1, n ≥ 3.

In the sequel we also assume that G has no normal elementary abelian sub-

group of order 8.
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Suppose for a moment that Φ(G) is cyclic. Since Φ(G) = f1(G), it follows

that G has a cyclic subgroup of index 4. We may use Proposition 2.16. Since G

has no normal E8 the cases (a) and (b) of that proposition are ruled out. If G

is a U2-group (case (c)), then |G/G′| = 8 which contradicts Lemma 3.2. Since

G is nonmetacyclic and d(G) = 3, we see that the only possibility is G = Q ∗Z,

where Q ∼= Q8 and Z ∼= C2n with Q∩Z = Z(Q) (from case (e)). By Lemma 3.2,

|G/G′| ≥ 24 and so n ≥ 3. We have Z(G) = Z, set Q = 〈x, y〉 and let v be an

element of order 4 in Z so that v2 = x2 = y2 = z, where 〈z〉 = Q∩Z. Then yv

is an involution so that D = 〈x, yv〉 ∼= D8 and G = D ∗ Z with D ∩ Z = Z(D).

We see that G has in this case two distinct normal four-subgroups which are

contained in D.

Conversely, assume that G possesses two distinct normal four-subgroups. By

Proposition 2.13, G = D ∗ Z with D ∼= D8, D ∩ Z = Z(D), and Z is either

cyclic or of maximal class. But in our case d(G) = 3 and so Z must be cyclic

thus we have obtained the group of the previous paragraph. We have proved

Lemma 3.4: Suppose that G is nonabelian and G does not have a normal

elementary abelian subgroup of order 8. Then the following two assumptions

are equivalent:

(a) Φ(G) is cyclic.

(b) G has two distinct normal four-subgroups.

If G satisfies (a) or (b), then G = Q ∗ Z with Q ∼= Q8, Z ∼= C2n , n ≥ 3, and

Q ∩ Z = Z(Q).

In the sequel we assume also that Φ(G) is noncyclic which is equivalent with

the assumption that G has a unique normal four-subgroup W .

Since Φ(G) is metacyclic but noncyclic, it follows by a result of Burnside

(Proposition 2.6) that W = Ω1(Z(Φ(G))) ∼= E4. In particular, |G| ≥ 25. Let X

be a metacyclic maximal subgroup of G. Let i ∈ X−W be an involution. Since

i cannot centralize W (because X is metacyclic), it follows 〈W, i〉 ∼= D8. By

Proposition 2.7, X is of maximal class. This is a contradiction, since |X | ≥ 24

and X possesses the normal four-subgroup W . We have proved the following

result

Lemma 3.5: Let G be nonabelian without a normal E8 and having a unique

normal four-subgroup W . If X is any metacyclic maximal subgroup of G, then

Ω1(X) = W and X is not of maximal class.
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Now assume in addition that G′ ∼= C2r , r ≥ 1. By Lemma 3.2, G = EF

with normal subgroups E and F , where E ∩ F = G′, E/G′ ∼= E4, and F/G′ ∼=

C2m , m ≥ 2. Let a ∈ F be such that 〈a〉 covers F/G′. Then, Φ(G) = G′〈a2〉

and W = Ω1(Z(Φ(G))) is a unique normal four-subgroup of G. Since W 6≤ E,

E does not have a G-invariant four-subgroup. Because E is noncyclic, the

Roquette’s lemma (Proposition 2.19) implies that E is of maximal class with

|E| = 2r+2 and E′ = G′ = Φ(E). We note that M = EΦ(G) = E〈a2〉 is the

unique nonmetacyclic maximal subgroup of G, since E〈a2m−1

〉/G′ ∼= E8. Hence,

each maximal subgroup of G containing F is metacyclic. Suppose that there is

an involution i ∈ E −G′. Then X = F 〈i〉 is a metacyclic maximal subgroup of

G with Ω1(X) > W , contrary to Lemma 3.5. Since there are no involutions in

E − G′, we have that E ∼= Q2r+2 , r ≥ 1, is generalized quaternion.

Suppose r > 1. Let y be an element of order 4 in E −G′ so that y2 ∈ Ω1(G
′)

and Y = F 〈y〉 is a metacyclic maximal subgroup of G. Since |G′| ≥ 4, there is

an element v of order 4 in G′ so that 〈y, v〉 ∼= Q8 is a nonabelian subgroup of

order 8 contained in Y . By Proposition 2.7, Y is of maximal class, contrary to

Lemma 3.5.

We have proved that r = 1 and so G′ ∼= C2 and E ∼= Q8. Since Φ(G) is

noncyclic, 〈a〉 splits over G′, and so F = G′ × 〈a〉 with o(a) = 2m, m ≥ 2.

Suppose that a induces an outer automorphism on E. But then [E, 〈a〉] ∼= C4,

a contradiction. Hence, a induces an inner automorphism on E which implies

G = E ∗ C with E ∩ C = G′ and C/G′ ∼= C2m . Since Φ(G) = Φ(C) and Φ(G)

is noncyclic, C splits over G′. We have proved

Lemma 3.6: Let G be nonabelian without a normal E8 and having a unique

normal four-subgroup. If G′ is cyclic, then G′ ∼= C2 and G = Q × Z, where

Q ∼= Q8 and Z ∼= C2m , m ≥ 2.

From now on we assume that G′ is noncyclic. We know from the above that

this assumption implies that G has no normal E8, Φ(G) is noncyclic, and G has

a unique normal four-subgroup W .

For the start, we assume in addition that G′ ∼= E4. Using Lemma 3.2, we

have G = EF with normal subgroups E and F , where E ∩F = G′, E/G′ ∼= E4

and F/G′ ∼= C2m , m ≥ 2. Let M be the maximal subgroup of G containing E

so that d(M) = 3. Since F 6≤ M , each maximal subgroup of G containing F is

metacyclic but not of maximal class (Lemma 3.5). In particular, Ω1(F ) = G′.
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Let a ∈ F − M . Then 〈a〉 covers F/G′ and 〈a〉 ∩ G′ = 〈z〉 ∼= C2 so that

o(a) = 2m+1, m ≥ 2, and z = a2m

.

Since F ′ ≤ 〈a〉∩G′ = 〈z〉, F is either abelian of type (2m+1, 2) or F ∼= M2m+2 .

In any case, Φ(G) = G′〈a2〉 is abelian of type (2m, 2), m ≥ 2.

Let i be an involution in G − F . Then X = F 〈i〉 is a metacyclic maximal

subgroup of G with Ω1(X) = G′ (Lemma 3.5), a contradiction. We have proved

that Ω1(G) = G′ and so G has only three involutions.

Let x ∈ E − G′ such that x does not centralize G′. Then x2 ∈ G′ and

so 〈G′, x〉 ∼= D8. But in that case there are involutions in 〈G′, x〉 − G′, a

contradiction. We have proved that G′ ≤ Z(E).

Set v = a2m−1

so that o(v) = 4 and v2 = z. Since v ∈ Φ(G), v centralizes

G′. If X is any maximal subgroup of G containing F , then X is metacyclic and

therefore X ′ is cyclic of order at most 2 (since X ′ ≤ G′ ∼= E4). In particular, X

is of class ≤ 2. For any x ∈ E−G′, F 〈x〉 is a maximal subgroup of G containing

F and so [x, a2] = [x, a]2 = 1 which gives [E, a2] = 1. If for some y ∈ E − G′,

y2 = z, then

(yv)2 = y2v2[v, y] = zz = 1

and so yv is an involution in G − E, a contradiction. We have proved that z

is not a square in E. In particular, E is nonabelian (since E has exactly three

involutions and exp(E) = 4).

Since z ∈ Φ(Φ(G)) = 〈a4〉, we have z ∈ Z(G). Take an x ∈ E − G′ so that

x2 ∈ G′ − 〈z〉 and F 〈x〉 is of class ≤ 2. This gives [x2, a] = [x, a]2 = 1 and

CG(x2) ≥ 〈E, a〉 = G. We have proved that G′ ≤ Z(G), G is of class 2 and F

is abelian of type (2m+1, 2).

We have Φ(G) = G′〈a2〉 ≤ Z(G). If Z(G) > Φ(G), then G/Z(G) ∼= E4 and

each (of the three) maximal subgroups of G containing Z(G) is abelian. In that

case a result of A. Mann (Proposition 2.5) implies |G′| ≤ 2, a contradiction.

We have proved Z(G) = Φ(G).

If E is minimal nonabelian, then the fact that Ω1(E) = G′ ∼= E4 implies that

E is metacyclic of exponent 4 (see Proposition 2.8) and so there are elements x

and y of order 4 in E − G′ so that

E = 〈x, y |x4 = y4 = 1, xy = x−1〉,

where E′ = 〈x2〉, x2 6= y2, x2 ∈ G′ − 〈z〉, y2 ∈ G′ − 〈z〉, and x2y2 = z because

z is not a square in E.
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If E is not minimal nonabelian, then the fact that E has only three involutions

and z is not a square in E implies E = Q × 〈z〉 with Q ∼= Q8.

Suppose that E is minimal nonabelian given above. We note that v = a2m−1

centralizes E and v2 = z. Replace y with y′ = vy so that

(y′)2 = (vy)2 = v2y2 = zy2 = x2 and xy′

= xvy = xy = x−1

and, therefore, 〈x, y′〉 = Q ∼= Q8 and E∗ = Q× 〈z〉 is another complement of F

modulo G′. Indeed, note that E∗ > G′ = Ω1(G), E∗/G′ ∼= E4, E∗ is normal in

G and E∗ ∩ F = G′. Hence, replacing E with E∗, if necessary, we may assume

from the start that E is not minimal nonabelian and so E = Q × 〈z〉, Q ∼= Q8,

and setting 〈u〉 = Q′ = Z(Q), we have G′ = 〈u〉 × 〈z〉 ∼= E4, M = Q × 〈a2〉 ∼=

Q8 × C2m , and Φ(M) = 〈u〉 × 〈a4〉, where 〈a4〉 ≥ 〈z〉.

Set Q = 〈x, y〉 so that x2 = y2 = [x, y] = u. We have G = Q〈a〉 with Q ∼= Q8,

Q ∩ 〈a〉 = {1}, o(a) = 2m+1, m ≥ 2, and a2 centralizes Q.

Let l ∈ G − M so that l = aiq, where i is an odd integer and q ∈ Q. Then

(noting that G is of class 2), we get l2 = a2iq2[q, ai],where q2[q, ai] ∈ G′. Hence,

o(l2) = 2m and l4 = (a4)i and so 〈l4〉 ≥ 〈z〉. Hence, each element l ∈ G − M is

of order 2m+1 and 〈l〉 ≥ 〈z〉.

The element a does not normalize Q (otherwise, G′ ≤ Q and G′ would be

cyclic). Since |E : Q| = 2 and E is normal in G, we have Q ∩ Qa = 〈x〉 ∼= C4

and (Q∩Qa)a = Qa∩Qa2

= Qa∩Q (since a2 centralizes Q) so that 〈x〉a = 〈x〉.

If xa = x−1, then we replace a with a′ = ay, where y ∈ Q − 〈x〉. We get

xa′

= xay = (x−1)y = x and so a′ centralizes x, o(a′) = 2m+1 and 〈a′〉 ≥ 〈z〉.

Hence we may assume from the start that xa = x and the maximal subgroup

A = 〈x〉 × 〈a〉 is abelian of type (4, 2m+1). By a result of Mann (Proposition

2.5), A is a unique abelian maximal subgroup of G. If y ∈ Q − 〈x〉, then

[y, a] ∈ G′ −〈u〉 (otherwise Q would be normal in G). Suppose that [y, a] = uz.

Then replace a with a∗ = ax (noting that a∗ centralizes x, o(a∗) = 2m+1, and

〈a∗〉 ≥ 〈z〉), we get

[y, a∗] = [y, ax] = [y, a][y, x] = uz · u = z.

Thus, we may assume from the start that [y, a] = z. We have proved

Lemma 3.7: Suppose that G′ is a four-group. Then G = Q〈a〉, where

Q = 〈x, y〉 ∼= Q8, o(a) = 2n, n ≥ 3, Q ∩ 〈a〉 = {1}, a2 centralizes Q, [a, x] =

1 and [a, y] = a2n−1

= z. Here G′ = 〈u, z〉 ∼= E4, where 〈u〉 = Z(Q),
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Φ(G) = Z(G) = 〈a2〉 × 〈u〉 ∼= C2n−1 × C2, and M = Q × 〈a2〉 is a unique

nonmetacyclic maximal subgroup of G.

In the rest of this section we assume that G′ is noncyclic but G′ is not isomor-

phic to a four-group. Since G′ ≤ Φ(G), G′ is metacyclic and so G′/Φ(G′) ∼= E4

and Φ(G′) 6= {1}. Let R be a G-invariant subgroup of index 2 in Φ(G′). We

want to study the structure of G/R and so we may assume that R = {1}. In

that case Φ(G′) ∼= C2 and a result of Burnside (Proposition 2.6) implies that G′

is abelian of type (4, 2). Here W = Ω1(G
′) is a unique normal four-subgroup of

G and 〈z〉 = f1(G
′) ≤ Z(G). By Lemma 3.2, G = EF with normal subgroups

E and F , where E ∩ F = G′, E/G′ ∼= E4 and F/G′ ∼= C2m , m ≥ 2. Let a ∈ F

be such that 〈a〉 covers F/G′ and Φ(G) = G′〈a2〉. Also, M = E〈a2〉 is the

unique nonmetacyclic maximal subgroup of G and so any proper subgroup of

G which is not contained in M is metacyclic.

Let i be an involution in G and let X be a metacyclic maximal subgroup of

G containing F 〈i〉. By lemma 3.5, Ω1(X) = W and so i ∈ W . We have proved

that Ω1(G) = W .

Suppose that W ≤ Z(G). In this case, take an involution s ∈ W − 〈z〉

and consider the group G/〈s〉. We have (G/〈s〉)′ ∼= C4, which contradicts our

previous results (which shows that a cyclic commutator group is of order at

most 2). Hence W 6≤ Z(G), so that CG(W ) is a maximal subgroup of G and

Ω1(Z(G)) = 〈z〉, which implies that Z(G) is cyclic.

Let v be an element of order 4 in G′ and let u ∈ W −〈z〉. Then v2 = z and the

set {〈v〉, 〈vu〉} is the set of cyclic subgroups of order 4 in G′. Suppose that 〈v〉

is not normal in G (and then also 〈vu〉 is not normal in G). Let {X1, X2, X3}

be the set of maximal subgroups of G containing F . Since Xi is metacyclic, X ′
i

is cyclic for each i = 1, 2, 3. By our assumption (and noting that W 6≤ Z(G)),

we get X ′
i ≤ 〈z〉. However, by a result of A. Mann (Proposition 2.5), this gives

a contradiction.

We have proved that 〈v〉 and 〈vu〉 are normal subgroups in G. This implies

that Φ(G) ≤ CG(v) ∩ CG(vu) and so G′ ≤ Z(Φ(G)) because G′ = 〈v, vu〉. But

Φ(G)/G′ is cyclic and so Φ(G) is abelian. In particular, a2 centralizes G′.

We want to determine the subgroup 〈a2m

〉 ≤ G′. If a2m

= 1, then a2m−1

is

an involution in F − G′, contrary to our result that Ω1(G) = W ≤ G′. Hence

a2m

6= 1. If a2m

= z, then a2m−1

∈ Φ(G) − G′, o(a2m−1

) = 4, and a2m−1

v is an

involution in Φ(G)−G′, a contradiction. Suppose that a2m

= u ∈ W −〈z〉 and
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so F = 〈a〉〈v〉, 〈a〉 ∩ 〈v〉 = {1} and a normalizes 〈v〉 (since 〈v〉 is normal in G).

We get va = vzε, ε = 0, 1 and so F ′ ∈ 〈z〉 which implies that f2(F ) = 〈a4〉 ≥

〈u〉. It follows that 〈u〉 is a characteristic subgroup in F and so u ∈ Z(G), a

contradiction. Hence, replacing 〈v〉 with 〈vu〉 and v with v−1, if necessary, we

may assume that a2m

= v. Thus, o(a) = 2m+2 and so 〈a〉 is a cyclic subgroup

of index 2 in F . Since F is not of maximal class (W ∼= E4 is normal in F

and |F | ≥ 25), F is either abelian or F ∼= M2m+3 . In any case, F ′ ≤ 〈z〉 and

a2 ∈ Z(F ).

We claim that v ∈ Z(G). If q is an element in E, then [q, a] ∈ G′ and so

[q, a2] = [q, a][q, a]a = [q, a][q, a]zε = [q, a]2zε = zη, ε, η = 0, 1,

since [q, a]2 ∈ f1(G
′) = 〈z〉. This gives

[q, a4] = [q, a2][q, a2]a
2

= zη(zη)a2

= (zη)2 = 1.

But a2m

= v, m ≥ 2, and so 〈a4〉 ≥ 〈v〉 which implies that v centralizes E. It

follows CG(v) ≥ 〈E, a〉 = G and we are done.

Now we use Lemma 3.7 for the group G/〈z〉 since (G/〈z〉)′ = G′/〈z〉 ∼= E4.

It follows that G/〈z〉 possesses a quaternion subgroup Q̃/〈z〉 ∼= Q8. Suppose

that v ∈ Q̃. Then Φ(Q̃) = 〈v〉 and Q̃ possesses a cyclic subgroup of index 2.

But such groups cannot have a proper homomorphic image Q̃/〈z〉 isomorphic

to Q8. Hence, v 6∈ Q̃ and so Q̃ ∩ 〈v〉 = 〈z〉. If |Q̃′| = 4, then a result of

O. Taussky (Proposition 2.4) implies that Q̃ is of maximal class. This is again

a contradiction since Q̃/〈z〉 ∼= Q8. Hence Q̃′ = 〈u〉 is of order 2 and u 6= z

since Q̃/〈z〉 is nonabelian. We get 〈u, v〉 = G′ and therefore E∗ = Q̃ ∗ 〈v〉 is

normal in G. But (E∗)′ = Q̃′ = 〈u〉 is a characteristic subgroup of E∗ and so

u ∈ Z(G). This gives W = 〈u, z〉 ≤ Z(G) and this is our final contradiction.

We have proved that such a group G does not exist. We conclude with the

following result which sums up all results of this section.

Theorem 3.8: Let G be a 2-group which possesses exactly one nonmetacyclic

maximal subgroup M . Then d(G) ≤ 3 and we assume here d(G) = 3. In that

case d(M) = 3, G/G′ is abelian of type (2, 2, 2m), m ≥ 2, G′ is elementary

abelian of order ≤ 4, and we have exactly the following five possibilities:

(a) G is abelian of type (2, 2, 2m), m ≥ 2.

(b) G ∼= C2 × M2n+1, n ≥ 3, where M2n+1 = 〈a, v | a2n

= v2 = 1, [v, a] =

a2n−1

〉.
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(c) G = Q ∗ Z, where Q ∼= Q8, Z ∼= C2n , n ≥ 3, and Q ∩ Z = Z(Q).

(d) G = Q × Z, where Q ∼= Q8, Z ∼= C2n , n ≥ 2.

(e) G = QZ, where Q = 〈x, y〉 ∼= Q8, Z = 〈a〉 ∼= C2n , n ≥ 3, Q ∩ Z = {1},

a2 centralizes Q, [a, x] = 1, and [a, y] = a2n−1

= z. Setting Z(Q) = 〈u〉,

we have here G′ = 〈u, z〉 ∼= E4, Φ(G) = Z(G) = 〈a2〉×〈u〉 ∼= C2n−1×C2,

and M = Q × 〈a2〉.

Conversely, it is easily checked that all groups G given in (a) to (e) have exactly

one nonmetacyclic maximal subgroup and d(G) = 3.

4. The case d(G) = 2

We assume in this section that G is a 2-group with exactly one nonmetacyclic

maximal subgroup M and d(G) = 2 . By Proposition 2.2 follows at once that

d(M) = 3, G is nonmetacyclic and so G′ 6= {1}.

First we treat the easy case |G′| = 2. By Proposition 2.9, G is minimal

nonabelian. By Proposition 2.8, we have

G = 〈a, b | a2m

= b2n

= c2 = 1, [a, b] = c, [a, c] = [b, c] = 1, m ≥ n ≥ 1, m ≥ 2〉,

where |G| = 2m+n+1, Ω1(G) = 〈a2m−1

, b2n−1

, c〉 ∼= E8, and G/Ω1(G) ∼=

C2m−1 × C2n−1 . Since there is only one maximal subgroup of G containing

Ω1(G), G/Ω1(G) must be cyclic and this implies n = 1 so that G/G′ is abelian

of type (2m, 2), m ≥ 2. We have |G : 〈a〉| = 4, (ab)2 = a2c, (ab)4 = a4, and so

|〈ab〉 : (〈ab〉∩〈a〉)| = 4 which gives (by the product formula) G = 〈a〉〈ab〉. Also,

〈c〉 = G′ is a maximal cyclic subgroup of G. We have proved

Theorem 4.1: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. If |G′| = 2, then

G = 〈a, b | a2m

= b2 = c2 = 1, m ≥ 2, [a, b] = c, [a, c] = [b, c] = 1〉,

which is a nonmetacyclic minimal nonabelian group with G/G′ being abelian of

type (2m, 2), m ≥ 2, G′ = 〈c〉 is a maximal cyclic subgroup of G, G = 〈a〉〈ab〉,

and Ω1(G) ∼= E8 so that G has a normal elementary abelian subgroup of order 8.

Now assume that G has a normal elementary abelian subgroup E of order

8 but |G′| > 2. Then G/E 6= {1} must be cyclic and since G′ < E, we have

G′ ∼= E4. Let a ∈ G − E be such that 〈a〉 covers G/E. Since G′ = [E, 〈a〉],

a induces on E an automorphism of order 4 which implies |G/E| ≥ 4. We



Vol. 166, 2008 FINITE 2-GROUPS 327

have Φ(G) = G′〈a2〉 and so E ∩ 〈a〉 ≤ G′ (noting that |G : Φ(G)| = 4). The

maximal subgroup M = E〈a2〉 is nonmetacyclic and so the maximal subgroup

X = G′〈a〉 is metacyclic (of order ≥ 24) with a normal four-subgroup G′. This

implies that X is not of maximal class. If i is an involution in X − G′, then i

cannot centralize G′ (since X is metacyclic). But in that case G′〈i〉 ∼= D8 and so,

by Proposition 2.7, X is of maximal class, a contradiction. Hence Ω1(X) = G′

and so G′ ∩ 〈a〉 = 〈z〉 ∼= C2. Let v ∈ E − G′ so that [v, a] = u ∈ G′ − 〈z〉 and

[u, a] = z. This gives va = vu, ua = uz, 〈z〉 ≤ Z(G), o(a) = 2n, n ≥ 3, and

a2n−1

= z. The structure of G is uniquely determined. We compute

(av)2 = avav = a2vav = a2(vu)v = a2u and (av)4 = (a2u)2 = a4.

Thus, 〈av〉 ∩ 〈a〉 = 〈a4〉 and since |G : 〈a〉| = 4 and |〈av〉 : (〈av〉 ∩ 〈a〉)| = 4,

we get 〈av〉〈a〉 = G. If n ≥ 4, then CG(E) > E and, therefore, Ω1(G) = E. If

n = 3, then CG(E) = E and Ω1(G) = E〈a2〉 = 〈u〉 × 〈v, a2〉 ∼= C2 × D8. We

have proved:

Theorem 4.2: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Suppose that G has a normal elementary abelian

subgroup E of order 8 and |G′| > 2. Then G′ ∼= E4 and we have G = EZ, Z =

〈a〉 is of order 2n, n ≥ 3, E∩Z = 〈z〉 ∼= C2, z = a2n−1

, and setting E = 〈u, v, z〉,

we have ua = uz, va = vu. We have G′ = 〈u, z〉 ∼= E4, Z(G) = 〈a4〉 ∼= C2n−2 ,

Φ(G) = 〈u〉 × 〈a2〉 ∼= C2 × C2n−1 , and G = 〈av〉〈a〉. If n > 3, then Ω1(G) = E

and if n = 3, then Ω1(G) = E〈a2〉 ∼= C2 × D8.

In the rest of this section we assume that G has no normal elementary abelian

subgroup of order 8. We prove the following key result which will be used (with

the introduced notation and with all details) in the rest of this section.

Theorem 4.3: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume in addition that G has no normal elementary

abelian subgroup of order 8. Then the following hold

(a) |G′| > 2 and |G| ≥ 25.

(b) G has exactly one normal four-subgroup W = Ω1(Z(Φ(G))).

(c) For each metacyclic maximal subgroup X of G, Ω1(X) = W .

(d) Let R be a G-invariant subgroup of index 2 in G′. Then R is unique and

G/R is isomorphic to a group of Theorem 4.1. In particular, G/G′ is abelian

of type (2m, 2), m > 1, Ω1(G/R) ∼= E8, and if y is any element in G such
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that y2 ∈ G′, then y2 ∈ R. Also, each proper characteristic subgroup of G′ is

contained in R.

(e) G′ is abelian of rank ≤ 2.

(f) There are normal subgroups E and F of G such that G = EF , E∩F = G′,

F/G′ ∼= C2m , m ≥ 2, E/G′ ∼= C2, and there is an element x ∈ E − G′ of order

≤ 4 and we fix such an element x. Let a ∈ F − G′ be such that 〈a〉 covers

F/G′. Then Φ(G) = G′〈a2〉, Ω1(G/R) = (E〈a2m−1

〉)/R ∼= E8, M = E〈a2〉 is

the unique nonmetacyclic maximal subgroup of G, F = G′〈a〉 and F1 = G′〈ax〉

are two distinct metacyclic maximal subgroups of G, and F ′F ′
1 = R. We have

G = 〈a, x〉 and v = [a, x] ∈ G′ − R.

(g) Assuming in addition that G′ is noncyclic, we have the following proper-

ties:

(g1) All elements in G′ −R are of order 2e = exp(G′). In particular, o(v) = 2e.

(g2) If R is cyclic, then |R| = 2 and G′ ∼= E4.

(g3) We have G′/〈v〉 ∼= R/〈v2〉 is cyclic of order ≤ 2e and if y is any element

in R−Φ(G′), then 〈y〉 covers R/〈v2〉 and 〈v2〉 has a cyclic complement of

order ≤ 2e in R.

(g4) If exp(R) = exp(G′) = 2e, then G′ ∼= C2e × C2e is homocyclic of rank 2

and if exp(R) < exp(G′) = 2e, then exp(R) = 2e−1.

(g5) We have a2m

∈ R − Φ(G′) and (ax)2
m

∈ R − Φ(G′).

(g6) If G/Φ(G′) has a normal elementary abelian subgroup of order 8, then

Φ(G′) 6= {1} and we may assume that E/Φ(G′) ∼= E8 so that our fixed

element x ∈ E −G′ with o(x) ≤ 4 has in this case the additional property

x2 ∈ Φ(G′).

(g7) We have x2 ∈ W ≤ G′ and if G′ 6∼= E4, then W ≤ R.

(g8) We have vx = v−1zε, where ε = 0, 1 and ε = 1 if and only if x2 ∈ W−Z(G)

in which case W 6≤ Z(G) and 〈z〉 = E ∩ Z(G).

(g9) We have F = 〈a〉〈v〉, F1 = 〈ax〉〈v〉, and Φ(G) = 〈a2〉〈v〉.

(g10) Setting b = [v, a] (which is equivalent with va = vb) and b1 = [v, ax],

we have F ′ = 〈b〉, F ′
1 = 〈b1〉 with b, b1 ∈ R − Φ(G′), 〈b〉〈b1〉 = R, o(b) =

exp(R), and b1 = v−2zεb−1.

(g11) We have bx = b−1, bx
1 = b−1

1 so that x inverts each element in R. Also,

b−1
1 ba

1 = (bba)−1 ∈ 〈b〉 ∩ 〈b1〉.

(g12) We have Φ(G)′ = 〈bba〉 and Φ(G) is powerful.

(g13) We have G = 〈ax〉〈a〉 and so G is a product of two cyclic subgroups.
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Proof. Since G has no normal E8, we get |G′| > 2 (Theorem 4.1) and |G| ≥

25 because |G/G′| ≥ 23 (O. Taussky). If G has two distinct normal four-

subgroups, then Proposition 2.13 implies that d(G) > 2, a contradiction. Hence,

by Proposition 2.19, G possesses exactly one normal four-subgroup W .

Let X be a metacyclic maximal subgroup of G so that |X : Φ(G)| = 2. If Φ(G)

is cyclic, then G has a cyclic subgroup of index 2, a contradiction. Hence Φ(G)

is noncyclic and a result of Burnside (Proposition 2.6) implies that Z(Φ(G)) is

noncyclic. This gives W = Ω1(Z(Φ(G))), noting that Φ(G) is metacyclic. Since

|X | ≥ 24 and X has a normal four-subgroup, X is not of maximal class. Let

i be an involution in X − W . Since X is metacyclic, i cannot centralize W .

It follows 〈W, i〉 ∼= D8 and then Proposition 2.7 implies that X is of maximal

class, a contradiction. Hence, we have Ω1(X) = W for each metacyclic maximal

subgroup X of G.

Let R be a G-invariant subgroup of index 2 in G′. By Proposition 2.14,

R = Φ(G′)K3(G) and so such a subgroup R is unique. Since G is nonmetacyclic,

Ḡ = G/R is also nonmetacyclic (Proposition 2.15). If X is a metacyclic maximal

subgroup of G, then X̄ (bar convention) is metacyclic. If M is the unique

nonmetacyclic maximal subgroup of G, then M̄ is also nonmetacyclic (othervise,

Proposition 2.2 would imply that Ḡ is metacyclic). Since |Ḡ′| = 2, Ḡ must be

isomorphic to a group of Theorem 4.1. In particular, G/G′ is abelian of type

(2m, 2), m > 1, Ω1(G/R) ∼= E8, and if y is any element in G such that y2 ∈ G′,

then y2 ∈ R. The uniqueness of R also implies that each proper characteristic

subgroup of G′ is contained in R.

Let X1 6= X2 be two metacyclic maximal subgroups of G so that X ′
1 and

X ′
2 are cyclic normal subgroups of G. Since G/R is minimal nonabelian, we

have X ′
1X

′
2 ≤ R. By a result of A. Mann (Proposition 2.5), we get R = X ′

1X
′
2.

On the other hand, G/CG(X ′
1) and G/CG(X ′

2) are abelian groups and so G′

centralizes X ′
1X

′
2 = R. But |G′ : R| = 2 and, therefore, G′ is abelian (of rank

≤ 2).

Now we use the structure of G/R. There are normal subgroups E and F of

G such that G = EF , E ∩ F = G′, F/G′ ∼= C2m , m ≥ 2, and E/G′ ∼= C2.

Let a ∈ F − G′ be such that 〈a〉 covers F/G′. Then Φ(G) = G′〈a2〉 and

Ω1(G/R) = S/R ∼= E8, where S = E〈a2m−1

〉 (because E/R ∼= E4 and a2m

∈ R).

It follows that M = E〈a2〉 is the unique nonmetacyclic maximal subgroup of

G (noting that already S is nonmetacyclic). Let x be any element in E − G′

so that G = 〈a, x〉, F = G′〈a〉 and F1 = G′〈ax〉 are two metacyclic maximal
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subgroups of G, where we use the facts that 〈ax〉 also covers G/E ∼= C2m and

(ax)2 ∈ Φ(G). Set S0 = G′〈a2m−1

〉 and E1 = G′〈a2m−1

x〉 so that S0 is a

metacyclic maximal subgroup of S, E1/G′ is another complement of F/G′ in

G/G′, and S − S0 = (E − G′) ∪ (E1 − G′). By Proposition 2.1, Ω2(S) 6≤ S0

and so there are elements of order ≤ 4 in S − S0. Interchanging E and E1, if

necessary, we may assume from the start that there is an element x ∈ E − G′

with o(x) ≤ 4 and we choose and fix such an element x. We set v = [a, x] so

that v ∈ G′ − R. Indeed, we have G = 〈a, x〉 and so if v ∈ R, then G/R would

be abelian.

In what follows we assume that G′ is noncyclic so that Φ(G′) < R and

G′/Φ(G′) ∼= E4. Let 2e = exp(G′), e ≥ 1, be the exponent of G′. If there is an

element in G′−R of order < 2e (in which case e > 1), then Ωe−1(G
′) is a proper

characteristic subgroup of G′ which is not contained in R, a contradiction.

Hence, all elements in G′ − R are of order 2e. In particular, the element v ∈

G′ − R of the previous paragraph is of order 2e. By Proposition 2.20, 〈v〉 has

a cyclic complement 〈s〉 of order ≤ 2e (noting that G′ is of rank 2). Hence,

G′/〈v〉 ∼= R/〈v2〉 is cyclic of order ≤ 2e. Since v2 ∈ Φ(G′), we have Φ(G′) =

〈s2〉 × 〈v2〉 and if y is any element in R − Φ(G′), then 〈y〉 covers R/〈v2〉.

Suppose that R is cyclic of order > 2. Since G′ is noncyclic, there is an

involution in G′ − R, contrary to the fact that all elements in G′ − R are of

order 2e = exp(G′). Hence, if R is cyclic, then |R| = 2 and G′ ∼= E4.

Suppose that exp(R) = exp(G′) = 2e, e > 1. Let y be an element of order 2e

in R. Suppose also that 〈y〉 ∩ 〈v2〉 6= {1}. Then we have

|〈y〉 : (〈y〉 ∩ 〈v〉)| = |〈v〉 : (〈y〉 ∩ 〈v〉)| = 2e′

, e′ < e,

and so there is an element y′ of order 2e in 〈y〉 such that (y′)2
e
′

= v−2e
′

. But

then (y′v)2
e
′

= 1 and y′v ∈ G′ − R, a contradiction. Thus, 〈y〉 splits over 〈v2〉,

R = 〈y〉 × 〈v2〉, and so G′ ∼= C2e ×C2e is homocyclic of rank 2. But if G′ is not

homocyclic, then exp(R) = 2e−1 and so (by Proposition 2.20) 〈v2〉 has a cyclic

complement in R. It follows that in any case 〈v2〉 has a cyclic complement in R.

Since a2m

∈ G′, we know that a2m

∈ R. Suppose that a2m

∈ Φ(G′). We

look at F/Φ(G′) = F̄ so that Ḡ′ = G′/Φ(G′) ∼= E4 is a normal four-subgroup

of the metacyclic group F̄ (of order ≥ 24) and so F̄ is not of maximal class.

But a2m−1 is an involution in F̄ − Ḡ′ and a2m−1 cannot centralize Ḡ′. It follows

that 〈Ḡ′, a2m−1〉 ∼= D8 and this is a contradiction (by Proposition 2.7). We
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have proved that a2m

∈ R − Φ(G′). With the same argument (working in

F̄1 = F1/Φ(G′)), we get (ax)2
m

∈ R − Φ(G′).

Assume for a moment that G/Φ(G′) has a normal elementary abelian sub-

group S∗/Φ(G′) of order 8 so that S∗ < S and |S : S∗| = 2 (where S/R =

Ω1(G/R) ∼= E8). Since S∗ is nonmetacyclic, there is only one maximal sub-

group of G containing S∗ and so G/S∗ must be cyclic. In particular, G′ ≤ S∗.

Hence S∗ is equal to one of the three maximal subgroups of S containing G′.

They are E, E1, and S0 = G′〈a2m−1

〉. But S0 is metacyclic (as a subgroup of

F ) and so S0/Φ(G′) cannot be elementary abelian of order 8. It follows that

S∗ is equal to E or E1. Interchanging E and E1, if necessary, we may assume

that S∗ = E and so E/Φ(G′) ∼= E8. Since E is not metacyclic and G′ is a

metacyclic maximal subgroup of E, there is (by Proposition 2.1) an element x

of order ≤ 4 in E−G′, as before, and we have here (in our case where G/Φ(G′)

has a normal E8) in addition that x2 ∈ Φ(G′).

We have W ≤ G′ and if G′ is not a four-group, then also W ≤ R. If

W 6≤ Z(G), then we always set 〈z〉 = W ∩ Z(G). Since x2 ∈ G′ and o(x) ≤ 4,

we have x2 ∈ W and, therefore, [a, x2] = zε, where ε = 0, 1 and ε = 1 if and

only if a does not centralize x2 (in which case W 6≤ Z(G)). We compute

zε = [a, x2] = [a, x][a, x]x = vvx

and so vx = v−1zε.

We know that a2m

∈ R−Φ(G′), (ax)2
m

∈ R−Φ(G′) and so 〈a2m

〉 and (ax)2
m

cover G′/〈v〉 and, therefore, G′ = 〈a2m

〉〈v〉 = 〈(ax)2
m

〉〈v〉. But 〈a〉 covers F/G′

and 〈ax〉 covers F1/G′ and so F = 〈a〉〈v〉 and F1 = 〈ax〉〈v〉. Set b = [v, a] and

b1 = [v, ax] so that F ′ = 〈b〉 and F ′
1 = 〈b1〉, where we have used the facts that F

and F1 are metacyclic and F = 〈a, v〉, F1 = 〈ax, v〉. Since 〈b〉〈b1〉 = R, we may

assume (interchanging F = G′〈a〉 with F1 = G′〈ax〉 = G′〈xa〉, if necessary)

that b ∈ R − Φ(G′). Indeed, we have [xa, x] = [a, x] = v. Then we compute

b1 = [v, ax] = [v, x][v, a]x = v−1(x−1vx)bx = v−1(v−1zε)bx

= v−2zεbx ∈ R − Φ(G′),

since v−2 ∈ Φ(G′), bx ∈ R−Φ(G′), and zε ∈ Φ(G′). Indeed, if Φ(G′) 6= {1} and

W 6≤ Z(G), then 〈z〉 = W ∩ Z(G) ≤ Φ(G′). If Φ(G′) = {1}, then |R| = 2 and

R ≤ Z(G) and so the fact that x2 ∈ R gives ε = 0. Hence, in any case we get

b ∈ R − Φ(G′) and b1 ∈ R − Φ(G′) and (interchanging F and F1, if necessary)

we may assume that o(b) = exp(R).
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Conjugating the relation [v, a] = b (which gives va = vb and (v−2)a = v−2b−2)

with x we get

bx = [v−1zε, ax] = [v−1, a(a−1x−1ax)] = [v−1, av] = [v−1, v][v−1, a]v

= [v−1, a] = v(a−1v−1a) = v(va)−1 = v(vb)−1 = b−1,

and so we get bx = b−1. From the above we also get

b1 = v−2zεb−1 and so bx
1 = v2zεb = b−1

1 .

Thus, x acts invertingly on R. We compute

ba
1 = (v−2)azε(ba)−1 = v−2b−2zε(ba)−1 = b−1(v−2zεb−1)(ba)−1 = b−1b1(b

a)−1

and so b−1
1 ba

1 = (bba)−1 ∈ 〈b1〉 ∩ 〈b〉, since 〈b〉 and 〈b1〉 are normal subgroups of

G.

We show that Φ(G) is a powerful 2-group and (Φ(G))′ = 〈bba〉. Indeed,

we have F = 〈a〉〈v〉, a2, v ∈ Φ(G), |F : Φ(G)| = 2 and so Φ(G) = 〈a2〉〈v〉.

This gives (Φ(G))′ = 〈[v, a2]〉 and since [v, a2] = [v, a][v, a]a = bba, we get

(Φ(G))′ = 〈bba〉. But 〈b〉 = F ′ is normal in G and so 〈b〉 = 〈ba〉 and, therefore,

〈bba〉 ≤ f1(〈b〉). On the other hand, F is metacyclic and, therefore, b is a square

in F and so b = y2 for some y ∈ F . But F/G′ is cyclic of order ≥ 4 and b ∈ G′

and so y ∈ Φ(G). It follows that bba ∈ f2(〈y〉) and so Φ(G)′ ≤ f2(Φ(G)) and

this means that Φ(G) is powerful (see the last sentence in Introduction).

We compute:

[a, x2] = [a, x][a, x]x = vvx = v(v−1zε) = zε

and so

(ax)2 = axax = ax(xa)[a, x] = ax2av = a2x2zεv = a2v(x2zε).

It is easy to see that x2zε ∈ Φ(Φ(G)). Indeed, x2zε ∈ W and the facts that

a2m

∈ R−Φ(G′) and |R : Φ(G′)| = 2 give R = 〈a2m

, Φ(G′)〉 ≤ Φ(Φ(G)) because

a2m−1

∈ Φ(G), (m ≥ 2). Hence, if W ≤ R, we are done. If W 6≤ R, then R

is cyclic and we know that in that case G′ ∼= E4 and so |R| = 2. But then

x2 ∈ R ≤ Z(G) and so ε = 0 and again a2m

∈ R − Φ(G′) = R − {1}, and

therefore, 〈a2m

〉 = R ≤ Φ(Φ(G)). We receive again x2zε = x2 ∈ R ≤ Φ(Φ(G)).

We have proved that in any case x2zε ∈ Φ(Φ(G)).

Since (ax)2 = a2v(x2zε) and x2zε ∈ Φ(Φ(G)), we get

Φ(G) = 〈v, a2〉 = 〈a2v, a2〉 = 〈a2v(x2zε), a2〉 = 〈(ax)2, a2〉.
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But Φ(G) is powerful and so Proposition 2.11 implies Φ(G) = 〈(ax)2〉〈a2〉. We

conclude:

G = 〈ax〉F = 〈ax〉(Φ(G)〈a〉) = 〈ax〉(〈(ax)2〉〈a2〉)〈a〉

= (〈ax〉〈(ax)2〉)(〈a2〉〈a〉) = 〈ax〉〈a〉.

In the rest of this section we make case-to-case investigations depending on

the structure of G′ and G/Φ(G′). We shall use freely the notation and the

results stated in Theorem 4.3.

Theorem 4.4: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup M and d(G) = 2. Suppose that G′ is cyclic of order 2n, n > 1. Then

G = EZ, where E is normal in G and

E = 〈v, x | v2n

= 1, n > 1, x2 ∈ 〈z〉, z = v2n−1

, vx = v−1〉

is dihedral or generalized quaternion, Z = 〈a〉, Z ∩ E ≤ 〈z〉 = Z(E),

|Z/(Z∩E)| = 2m, m > 1, [a, x] = v, va = v−1+4i (i integer), and [v, a2m−1

] = 1.

Here G′ = 〈v〉 ∼= C2n , n > 1, Φ(G) = G′〈a2〉, M = E〈a2〉, G = 〈ax〉〈a〉 is a

product of two cyclic subgroups and CG(E) 6≤ E.

Proof. By Theorem 4.2, G has no normal E8 and so we may use Theorem 4.3

(a) to (f). Since v = [a, x] ∈ G′ −R, we have G′ = 〈v〉. Also, R = F ′F ′
1 implies

that interchanging F = G′〈a〉 and F1 = G′〈ax〉 = G′〈xa〉 (and noting that

[xa, x] = [a, x] = v), we may assume that F ′ = R = 〈b〉, where b = [v, a] which

gives va = vb, if necessary. Set W ∩G′ = 〈z〉 = Ω1(R) = Ω1(G
′) ≤ Z(G). Since

o(x) ≤ 4, x2 ∈ 〈z〉 and so x2 = zη, η = 0, 1. Therefore

1 = [a, x2] = [a, x][a, x]x = vvx and so vx = v−1.

It follows that E is dihedral or generalized quaternion. Since

(v2n−2

)a = (vb)2
n−2

= v2n−2

b2n−2

= v2n−2

z = v−2n−2

,

where o(v2n−2

) = 4, it follows that 〈a〉 ∩ E ≤ 〈z〉 = Z(E).

Since 〈v−2〉 = 〈b〉, we may set b = v−2+4i for some integer i. We have

va = v−1+4i and vax = v1−4i = vv−4i so that F1 = 〈v〉〈ax〉 is ordinary meta-

cyclic (since F1 centralizes 〈v〉/f2(〈v〉) = 〈v〉/〈v4〉). By Proposition 2.10, F1 is

powerful. Since

(ax)2 = axax = axxa[a, x] = ax2av = a2vzη,
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where zη ∈ Φ(F1), we get F1 = 〈ax, v〉 = 〈ax, a2〉 = 〈ax〉〈a2〉, where we have

used Proposition 2.11. But then

G = F1〈a〉 = (〈ax〉〈a2〉)〈a〉 = 〈ax〉〈a〉

and so G is a product of two cyclic subgroups.

Consider E1 = G′〈xa2m−1

〉, where E1∩F = G′ and so W 6≤ E1. Hence, E1 is

a normal subgroup of G which does not possess a G-invariant four-subgroup. By

Proposition 2.19, E1 is of maximal class (since E1 cannot be cyclic). But then

(xa2m−1

)2 ∈ 〈z〉 and, therefore, xa2m−1

also inverts G′ = 〈v〉. Indeed, setting

xa2m−1

= x′, we get G = 〈a, x′〉 and so [a, x′] = v′ ∈ G′−R and G′ = 〈v′〉. This

gives 1 = [a, (x′)2] = [a, x′][a, x′]x
′

= v′(v′)x′

and (v′)x′

= (v′)−1. It follows that

a2m−1

centralizes 〈v〉. Since a2m−1

does not fuse x and vx (noting that a fuses

x and vx), there is g ∈ 〈v〉 with ga2m−1

centralizing x and ga2m−1

centralizes E

and so CG(E) 6≤ E.

From Theorems 4.1, 4.2, 4.3(g13), and 4.4, we get the following important

result.

Corollary 4.5: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Then G = AB is a product of some cyclic subgroups

A and B.

The next two results are devoted to the case, where G/Φ(G′) has no normal

elementary abelian subgroup of order 8.

Theorem 4.6: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup M and d(G) = 2. Assume that G′ ∼= E4 and G has no normal

elementary abelian subgroup of order 8. Then G is a unique group of order 25

G = 〈a, x | a8 = x4 = 1, a4 = x2 = z, [a, x] = v, v2 = 1, [v, a] = z〉,

where Z(G) = 〈z〉 ∼= C2, G′ = 〈z, v〉 ∼= E4, M = 〈v〉 × 〈a2, x〉 ∼= C2 × Q8 (and

in fact this group is isomorphic to the group of Proposition 2.16(f)).

Proof. We may use Theorem 4.3 (a) to (g) (except (g6)). Here |R| = 2 so that

R = 〈z〉 ≤ Z(G) and G′ = 〈z〉 × 〈v〉 with v = [a, x]. Since x2 ∈ R, we have

vx = v−1 = v and so E = G′〈x〉 is abelian. But (by our assumption) E is

not elementary abelian and so x2 = z. We know that b = [v, a] ∈ R − {1}

and so [v, a] = z, W = G′ 6≤ Z(G) and CG(G′) = M = E〈a2〉. Also, a2m

∈

R − {1} and so a2m

= z. Since (E〈a2m−1

〉)/R ∼= E8, we have [a2m−1

, x] ≤ R.
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If [a2m−1

, x] = 1, then i = xa2m−1

is an involution in M − F and so 〈i〉 × G′

is a normal elementary abelian subgroup of order 8, a contradiction. Hence

[a2m−1

, x] = z and so E〈a2m−1

〉 = 〈v〉 × 〈x, a2m−1

〉 ∼= C2 × Q8. We compute

[a2, x] = [a, x]a[a, x] = vav = (vz)v = z, [a4, x] = [a2, x]a
2

[a2, x] = zz = 1,

and so if m > 2, then 〈a4〉 ≥ 〈a2m−1

〉 and in that case [a2m−1

, x] = 1, a

contradiction. Hence m = 2 and the structure of G is uniquely determined.

Theorem 4.7: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ is noncyclic, Φ(G′) 6= {1}, and

G/Φ(G′) has no normal elementary abelian subgroup of order 8. Then G′ has

a cyclic subgroup of index 2, G/G′ ∼= C4 × C2, Φ(G) is abelian, and we have

one of the following possibilities (depending on whether Z(G) is noncyclic or

cyclic):

(a)

G = 〈a, x | a8 = x4 = 1, x2 = u, a4 = uzη, η = 0, 1, [a, x] = v, v2n

= 1, n ≥ 2,

[u, a] = 1, v2n−1

= z, vx = v−1, [v, a] = uv−2zξ, ξ = 0, 1〉,

where |G| = 2n+4, Z(G) = 〈u, z〉 ∼= E4 and G′ = 〈u, v〉 ∼= C2 × C2n .

(b)

G = 〈a, x | a16 = x4 = 1, x2 = u, a4 = uv2n−2

zη, η = 0, 1, [a, x] = v,

v2n

= 1, n ≥ 4, ua = uz, v2n−1

= z, vx = v−1z, [u, v] = 1,

[v, a] = uv−2+2n−2

zξ, ξ = 0, 1〉,

where |G| = 2n+4, Z(G) = 〈z〉 ∼= C2 and G′ = 〈u, v〉 ∼= C2 × C2n .

Proof. We may use Theorem 4.3 (a) to (g) (except (g6)). Indeed, since |G′| > 4,

Theorem 4.2 implies that G has no normal E8. Applying Theorem 4.6 on

the factor-group G/Φ(G′), we get at once m = 2, i.e., F/G′ ∼= C4 and x2 ∈

R − Φ(G′). But x2 = u is an involution and if C is a maximal subgroup of G′

not containing u, then C ∩ R = Φ(G′), G′ = 〈u〉 × C and therefore C is cyclic

of order 2n, n ≥ 2 (since G′ is of rank 2). Hence, G′ has a cyclic subgroup of

index 2 and since [a, x] = v ∈ G′ −R, we have G′ = 〈u〉× 〈v〉, o(v) = 2n, n ≥ 2,

and Φ(G′) = 〈v2〉 with R = 〈u〉 × 〈v2〉. Let 〈z〉 = fn−1(G
′) so that z = v2n−1

,

W = 〈u, z〉 ∼= E4 and z ∈ Z(G). It follows that E centralizes W and so

CG(W ) ≥ M = E〈a2〉.
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We know that a4 ∈ R−Φ(G′) and the element b = [v, a] is of order exp(R) =

2n−1 so that b = uv2i for an odd integer i. Suppose that C〈v2〉(a) > 〈z〉 which

forces n ≥ 3. From va = vb, we get in this case

(v2n−2

)a = (vb)2
n−2

= v2n−2

b2n−2

= v2n−2

z = v−2n−2

since v2n−2

is an element of order 4 in 〈v2〉 and v2n−1

= z. This is a contradiction

and so C〈v2〉(a) = 〈z〉. In particular, a8 ∈ 〈z〉 and so we have either a4 = uzη

(first case) or n ≥ 3 and a4 = uv2n−2

zη (second case), where η = 0, 1.

Since F ′ = 〈b〉 and F is metacyclic, there is y ∈ F such that y2 = b. But

b ∈ G′ − Φ(G′) and so y ∈ F − G′. The fact that F/G′ ∼= C4 implies that

y ∈ G′a2 ≤ M . Since G′ is abelian, CG′(y) = CG′(a2) and so a2 centralizes b.

But b = uv2i (i odd) and y ∈ M and so a2 centralizes u which gives that a2

centralizes 〈v2i〉 = 〈v2〉. On the other hand, 〈v2〉 = Φ(G′) is normal in G and

so in case n > 2, a induces an involutory automorphism on 〈v2〉. From va = vb,

we get (v2)a = (vb)2 = v2b2 and so [v2, a] = b2 = v4i (i odd). Hence, in case

n > 2, a induces on 〈v2〉 an involutory automorphism such that (〈v2, a〉)′ = 〈v4〉

and so (v2)a = v−2zζ, ζ = 0, 1, where ζ = 1 is possible only if n > 3. Thus

b2 = v−4zζ which gives v4i = v−4vζ2n−1

and so 4i ≡ −4 + ζ2n−1(mod 2n) and

therefore 2i ≡ −2 + ζ2n−2(mod 2n−1). We get b = uv2i = uv−2+ζ2n−2+ξ2n−1

(ξ

an integer) and so b = uv−2vζ2n−2

zξ, ζ = 0, 1, ξ = 0, 1, and ζ = 1 is possible

only if n > 3.

In the first case, where a4 = uzη, we have CG(W ) ≥ 〈M, a〉 = G and so

W ≤ Z(G) which implies ε = 0 and vx = v−1. It is easy to see that in this

case Z(G) = W ∼= E4 (since x acts invertingly on G′, Z(G) ≤ Φ(G) = G′〈a2〉

and [a2, x] = vav = (vb)v = v2b 6= 1). Suppose that in this case ζ = 1, i.e.,

b = uv−2v2n−2

zξ, n ≥ 4. Then we get

[a2, x] = [a, x]a[a, x] = vav = v2b = uv2n−2

zξ,

and noting that a2 centralizes v2 follows

1 = [uzη, x] = [a4, x] = [a2, x]a
2

[a2, x] = (uv2n−2

zξ)a2

uv2n−2

zξ = v2n−1

= z,

a contradiction. Hence in this case ζ = 0.

Suppose that we are in the second case, where n ≥ 3 and a4 = uv2n−2

zη. In

this case we show first that ua = uz and so W 6≤ Z(G), x2 = u ∈ W − Z(G)

and ε = 1, vx = v−1z. Indeed, u = a4v−2n−2

zη and so

ua = a4(v−2n−2

)azη = a4v2n−2

zη = (a4v−2n−2

zη)z = uz.
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Also, it is easy to show that in this case n ≥ 4. If n = 3, then

b1 = v−2zb−1 = v−2z(uv−2i) = u(zv−2(1+i)) ∈ W − 〈z〉

since 1 + i is even and so v−2(1+i) ∈ 〈z〉. But then 〈b1〉 = F ′
1 ≤ Z(G) and

W ≤ Z(G), a contradiction. Assume that ζ = 0 so that b = uv−2zξ. But then

b1 = v−2zb−1 = uzξ+1 is an involution in W −〈z〉 and 〈b1〉 = F ′
1 ≤ Z(G) which

gives W ≤ Z(G), a contradiction. Hence, in this case we must have ζ = 1. It is

easy to see that in this case Z(G) = 〈z〉.

In both cases, using the obtained relations, we compute bba = 1 and so

(Φ(G))′ = 〈bba〉 = {1} and Φ(G) is abelian.

In what follows we may assume that G′ is noncyclic of order > 4 and G/Φ(G′)

has a normal elementary abelian subgroup of order 8.

Theorem 4.8: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ ∼= C2 × C2n , n ≥ 2, and G/Φ(G′) has

a normal elementary abelian subgroup of order 8. Then we have:

G = 〈a, x | [a, x] = v, v2n

= 1, n ≥ 2, v2n−1

= z, x2 ∈ 〈z〉,

[v, a] = uv2+4s (s integer), u2 = [v, u] = 1, ux = u, vx = v−1,

a2m

= uzη or a2m

= uv2n−2

zη, (η = 0, 1),

where m ≥ 2 and in the second case n ≥ 4, 1 + s 6≡ 0(mod2n−3),

and n ≥ m + 2〉.

Here |G| = 2n+m+2, n ≥ 2, m ≥ 2, G′ = 〈u〉 × 〈v〉 ∼= C2 × C2n , where in

case o(a) = 2m+1 we have 〈u, z〉 ≤ Z(G) and so Z(G) is noncyclic and in case

o(a) = 2m+2 we have 〈u, z〉 6≤ Z(G) and so Z(G) is cyclic in which case n ≥ 4.

Proof. Since |G′| ≥ 8, Theorem 4.2 implies that G has no normal E8 and so

we may use Theorem 4.3 (a) to (g). Since [a, x] = v is of order 2n, we get

G′ = 〈u〉 × 〈v〉 for some involution u, Φ(G′) = 〈v2〉, and R = 〈u〉 × 〈v2〉. By

Theorem 4.3 (g6), E/Φ(G′) ∼= E8 and x2 ∈ 〈z〉, where we set v2n−1

= z and

so 〈z〉 = Ω1(Φ(G′)) ≤ Z(G). This gives ε = 0 and vx = v−1 and therefore x

acts invertingly on G′. We have W = 〈u〉 × 〈z〉 and since |G : CG(W )| ≤ 2 and

W = Z(E), we have CG(W ) ≥ M = E〈a2〉. Also, F/G′ ∼= C2m , m ≥ 2.

Since b = [v, a] ∈ R − Φ(G′) is of order exp(R) = 2n−1, we may set b = uv2i

with an odd integer i and we may also write b = uv2+4s (s integer). Suppose
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that C〈v2〉(a) > 〈z〉 which implies n ≥ 3. From b = [v, a] we get va = vb and so

(v2n−2

)a = (vb)2
n−2

= v2n−2

(uv2i)2
n−2

= v2n−2

z = v−2n−2

,

where o(v2n−2

) = 4. This is a contradiction and so C〈v2〉(a) = 〈z〉. But we

know that a2m

∈ R − Φ(G′) and so a2m+1

∈ 〈z〉 which gives either a2m

= uzη

or n ≥ 3 and a2m

= uv2n−2

zη, where η = 0, 1. If a2m

= uzη, then o(a) = 2m+1,

CG(W ) ≥ 〈M, a〉 = G and so W ≤ Z(G) and Z(G) is noncyclic.

Suppose that we are in the second case, where n ≥ 3, a2m

= uv2n−2

zη,

η = 0, 1, and o(a) = 2m+2. In this case u = a2m

v−2n−2

zη and so

ua = a2m

v2n−2

zη = (a2m

v−2n−2

zη)z = uz,

which implies that W 6≤ Z(G) and so Z(G) is cyclic. In this case we must have

n ≥ 4. Indeed, if n = 3, then

b1 = v−2b−1 = v−2(uv−2i) = uv−2(1+i)

and so the fact that 1 + i is even and o(v) = 8 implies v−2(1+i) ∈ 〈z〉. Hence b1

is an involution in W − 〈z〉 and since 〈b1〉 = F ′
1 ≤ Z(G), we get W ≤ Z(G), a

contradiction. Since

b1 = v−2b−1 = v−2uv−2−4s = uv−4(1+s)

and b1 ∈ R−Φ(G′) cannot be an involution (Z(G) is cyclic), it follows 1 + s 6≡

0(mod 2n−3). We have G = 〈a〉〈ax〉, where a2m

= uv2n−2

zη and a2m+1

= z.

Since o(a2m

) = 4 and a2m

is inverted by x, it follows that

〈a2m

〉 6≤ Z(G) and so 〈a2m

〉 6≤ 〈a〉 ∩ 〈ax〉 ≤ Z(G).

Since (ax)2
m

∈ R−Φ(G′) cannot be an involution (because W 6≤ Z(G)), it fol-

lows that 〈(ax)2
m

〉 being distinct from 〈a2m

〉, o((ax)2
m

) ≥ 8 and so 〈(ax)2
m+1

〉 ≤

〈v2〉 and 〈(ax)2
m+1

〉 > 〈z〉. This implies that 〈a〉∩〈ax〉 = 〈z〉 and so o(a) = 2m+2

and |G| = 2n+m+2 gives o(ax) = 2m+1+r, where o((ax)2
m+1

) = 2r, r ≥ 2. This

implies (by the product formula) m + r = n and so n ≥ m + 2.

In the rest of this section we consider the remaining case, where G′ has

no cyclic subgroup of index 2. By Theorems 4.2 and 4.7, G has no normal

elementary abelian subgroup of order 8 but G/Φ(G′) has a normal elementary

abelian subgroup of order 8. We shall use freely the notation and all results

from Theorem 4.3.
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Theorem 4.9: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ ∼= C2r × C2r , r ≥ 2, is homocyclic.

Then G/G′ ∼= C2 × C4 and

G = 〈a, x | a2r+2

= 1, r ≥ 2, [a, x] = v, [v, a] = b, v2r

= b2r

= [v, b] = 1,

v2r−1

= u, b2r−1

= z, x2 ∈ 〈u, z〉, bx = b−1, vx = v−1zε, ε = 0, 1,

and ε = 1 if and only if x2 6∈ 〈z〉, ba = b−1zη, η = 0, 1,

a4 = v−2b−1uηzζ , ζ = 0, 1〉.

Here |G| = 22r+3, r ≥ 2, G′ = 〈v〉 × 〈b〉 ∼= C2r × C2r , Z(G) = 〈z〉 ∼= C2, and

(Φ(G))′ = 〈zη〉, where Φ(G) = 〈a2〉〈v〉.

Proof. The element v = [a, x] ∈ G′ − R is of order 2r and if 〈b′〉 ∼= C2r is a

complement of 〈v2〉 in R, then R = 〈b′〉 × 〈v2〉, Φ(G′) = 〈(b′)2〉 × 〈v2〉 and all

elements in R−Φ(G′) are of order 2r. Hence, b = [v, a] ∈ R−Φ(G′) is of order

2r and so G′ = 〈b〉× 〈v〉, R = 〈b〉× 〈v2〉, Φ(G′) = 〈b2〉× 〈v2〉. We set v2r−1

= u,

b2r−1

= z so that W = 〈u, z〉, 〈z〉 = fr−1(R) ≤ Z(G) and we know that x acts

invertingly on R. From b = [v, a] follows va = vb, (v2r−1

)a = v2r−1

b2r−1

and

ua = uz so that W 6≤ Z(G) and W ∩ Z(G) = 〈z〉. Since W ≤ Z(E), we get

CG(W ) = M = E〈a2〉. We have x2 ∈ W and vx = v−1zε, ε = 0, 1, where ε = 1

if and only if x2 6∈ 〈z〉. It follows Z(E) = W .

We have b1 = v−2zεb−1 ∈ R − Φ(G′), where o(b1) = 2r, 〈b1〉 = F ′
1, F1 =

G′〈ax〉, and b2r−1

1 = (b−1)2
r−1

= z. But R = 〈b〉〈b1〉, |R| = 22r−1, and so

(by the product formula) 〈b〉 ∩ 〈b1〉 = 〈z〉. Since bba ∈ 〈b〉 ∩ 〈b1〉 (Theorem

4.3 (g11)), we get ba = b−1zη, η = 0, 1, and (Φ(G))′ = 〈bba〉 = 〈zη〉. Hence,

Φ(G) = G′〈a2〉 = 〈a2〉〈v〉 is either abelian or minimal nonabelian (Proposition

2.9). Also, b−1
1 (b1)

a = (bba)−1 = zη and (b1)
a = b1z

η which gives

(b1u
η)a = b1z

η(uz)η = b1u
η = v−2b−1uηzε

so that CG′(a) = 〈v−2b−1uηzε〉 is of order 2r (noting that G′ = 〈b1u
η〉 × 〈v〉

and ua = uz forces C〈v〉(a) = {1} ). But a2m

∈ R − Φ(G′) is of order 2r and

so 〈a2m

〉 = 〈v−2b−1uηzε〉 which gives 〈a2m+1

〉 = 〈v−4b−2〉 = 〈v4b2〉. We claim

that for all s ≥ 1, [a2s

, x] = v2s

b2s−1

. Indeed,

[a2, x] = [a, x]a[a, x] = vav = (vb)v = v2b
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and using the facts that v2 ∈ Φ(Φ(G)) ≤ Z(Φ(G)) and ba2

= (b−1zη)a = b, we

get

[a4, x] = [a2, x]a
2

[a2, x] = (v2b)a2

v2b = v4b2.

Assuming s > 2 and using the induction on s (since a2s−1

∈ Z(Φ(G))), we get

[a2s

, x] = [a2s−1

a2s−1

, x] = [a2s−1

, x]a
2s−1

[a2s−1

, x]

= (v2s−1

b2s−2

)a2s−1

(v2s−1

b2s−2

) = (v2s−1

b2s−2

)2 = v2s

b2s−1

.

Since a2m

∈ R − Φ(G′), m ≥ 2, and x acts invertingly on R, we get

(a2m

)x = a−2m

and so [a2m

, x] = a−2m+1

.

By the above relation, [a2m

, x] = v2m

b2m−1

= a−2m+1

and so using a result from

the previous paragraph we get 〈v2m

b2m−1

〉 = 〈v4b2〉 which forces m = 2. We

have proved that G/G′ is abelian of type (4, 2) and so a4 ∈ R − Φ(G′).

Because 〈a4〉 = 〈v−2b−1uηzε〉 , we get

a4 = v−2b−1uηzε(v−2b−1uηzε)2i

for some integer i, and so a4 = v−2−4ib−1−2iuηzε. Then (noting that a8 =

v−4b−2) a8 = v−4−8ib−2−4i = v−4b−2 implies i ≡ 0 (mod 2r−2) and so a4 =

v−2b−1z−iuηzε and a4 = v−2b−1uηzζ , ζ = 0, 1. We see also Z(G) = 〈z〉.

Theorem 4.10: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ has no cyclic subgroup of index 2.

Then Z(G) is elementary abelian of order at most 4, Z(G) ≤ Ω1(G
′), and

G/G′ ∼= C4 × C2.

Proof. We consider G/f2(G
′), where G′/f2(G

′) = (G/f2(G
′))′ ∼= C4 ×C4 and

so by Theorem 4.9, G/G′ ∼= C4×C2. We may use Theorem 4.3 with m = 2. We

have Z(G) ≤ Φ(G) = G′〈a2〉, where |(G′〈a2〉) : G′| = 2 and W ≤ Φ(G′). Note

that x acts invertingly on R. If x commutes with an element y ∈ G′ − R, then

y2 ∈ R must be an involution and so exp(G′) = 4 and G′ ∼= C4 × C4. But in

that case (Theorem 4.9), Z(G) ∼= C2 and Z(G) ≤ W and we are done. Hence,

we may assume that CG′(x) = CR(x) = W and so Z(G) ∩ G′ ≤ W . Suppose

that there is an element l ∈ Φ(G)−G′ such that l ∈ Z(G). We have l2 ∈ G′ and

so l2 ∈ R and therefore l2 must be an involution in W (since Ω1(Φ(G)) = W ).

But W ≤ Φ(G′) and so there is an element k ∈ G′ such that k2 = l2. In that
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case, kl is an involution in Φ(G) − G′, a contradiction. Hence, Z(G) ≤ W and

we are done.

Theorem 4.11: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ ∼= C2r × C2r+1 , r ≥ 2. Then we have

G = 〈a, x | a2r+2

= 1, r ≥ 2, [a, x] = v, [v, a] = b, v2r+1

= b2r

= [v, b] = 1,

v2r

= z, b2r−1

= u, x2 ∈ 〈u, z〉 ∼= E4, bx = b−1, vx = v−1,

ba = b−1, a4 = v−2b−1w, w ∈ 〈u, z〉〉.

Here |G| = 22r+4, r ≥ 2, G′ = 〈b〉 × 〈v〉 ∼= C2r × C2r+1 , Z(G) = 〈u, z〉 ∼= E4,

and Φ(G) = G′〈a2〉 is abelian.

Proof. By Theorem 4.10, we have m = 2 in Theorem 4.3. The element v =

[a, x] ∈ G′ −R is of order 2r+1 so that R is homocyclic of rank 2 and exponent

2r. It follows

R = 〈b〉 × 〈v2〉 = 〈b1〉 × 〈v2〉 = 〈b〉 × 〈b1〉

and so ε = 0, W = 〈v2r

〉 × 〈b2r−1

〉 = Z(G), x acts invertingly on G′, x2 ∈ W ,

ba = b−1 and ba
1 = b1, where va = vb and b1 = v−2b−1. We set v2r

= z and

b2r−1

= u. Since C〈v〉(a) = 〈z〉, we have CG′(a) = 〈b1〉 × 〈z〉. On the other

hand, a4 ∈ R − Φ(G′) is of order 2r and so 〈a4〉 is a cyclic subgroup of index 2

in CG′(a). This gives

〈a4〉 = 〈b1z
ζ〉 = 〈v−2b−1zζ〉, ζ = 0, 1.

Also, (Φ(G))′ = 〈bba〉 = {1} and therefore Φ(G) = G′〈a2〉 is abelian.

We get

a4 = v−2b−1zζ(v−2b−1zζ)2i = v−2−4ib−1−2izζ,

where i is an integer. On the other hand,

[a2, x] = [a, x]a[a, x] = vav = v2b and

[a4, x] = [a2, x]a
2

[a2, x] = (v2b)a2

(v2b) = (v2b)2 = v4b2.

Since x inverts G′, [a4, x] = a−8 and so a8 = v−4b−2. This gives

a8 = v−4b−2 = v−4−8ib−2−4i and − 2i ≡ 0 (mod 2r−1),

which implies a4 = v−2b−1w with w ∈ 〈u, z〉 since v−4i ∈ 〈z〉 and

b−2i ∈ 〈u〉.
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Somewhat more difficult is the next special case, where G′ ∼= C2r ×C2r+2 , r ≥

2. After that we shall be able to investigate the general case.

Theorem 4.12: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ ∼= C2r × C2r+2 , r ≥ 2. Then we have

G = 〈a, x | a2r+2

= 1, r ≥ 2, [a, x] = v, [v, a] = b, v2r+2

= b2r+1

= [v, b] = 1,

v2r+1

= b2r

= z, v2r

b2r−1

= u, x2 ∈ 〈u, z〉 ∼= E4,

bx = b−1, vx = v−1, ba = b−1, a4 = v−2b−1w, w ∈ 〈u, z〉〉.

Here |G| = 22r+5, r ≥ 2, G′ = 〈b, v〉 ∼= C2r × C2r+2 , Z(G) = 〈u, z〉 ∼= E4, and

Φ(G) = G′〈a2〉 is abelian.

Proof. We use freely Theorem 4.10 and 4.3 with m = 2. The element v =

[a, x] ∈ G′ − R is of order 2r+2 and we set z = v2r+1

so that z ∈ Z(G) since

〈z〉 = fr+1(G
′). The element b = [v, a] ∈ R − Φ(G′) is of order exp(R) = 2r+1

and since 〈b〉 covers R/〈v2〉 ∼= C2r , we get 〈b〉 ∩ 〈v2〉 = 〈b〉 ∩ 〈v〉 = 〈z〉. We

have b1 = [v, ax] ∈ R − Φ(G′) and 〈b1〉 also covers R/〈v2〉. We know that

b1 = v−2zεb−1 and so b2r

1 = v−2r+1

b−2r

= zz = 1 and therefore b1 is of order

2r. Thus 〈b1〉 ∩ 〈v2〉 = {1} and so R = 〈b1〉 × 〈v2〉 = 〈b1〉 × 〈b〉. Set u = b2r−1

1 =

v−2r

b−2r−1

= v2r

b2r−1

so that W = 〈u, z〉 ∼= Z(G) (noting that 〈b1〉 = F ′
1 is

normal in G and so u ∈ Z(G)), which gives ε = 0 and vx = v−1. We have

x2 ∈ W and we know that x acts invertingly on R and so bx = b−1. We have

also b−1
1 ba

1 = (bba)−1 ∈ 〈b〉∩〈b1〉 = {1} and so ba = b−1, ba
1 = b1, and (Φ(G))′ =

〈bba〉 = {1}. Since va = vb, we get (v2r

)a = v2r

b2r

= v2r

z = v−2r

(since

(v2r

)2 = z) and so CG′(a) = 〈b1〉×〈z〉. On the other hand, a4 ∈ R−Φ(G′), 〈a4〉

covers R/〈v2〉 and a4 ∈ CG′(a) which gives 〈a4〉 = 〈b1z
η〉 = 〈v−2b−1zη〉, η =

0, 1.

We compute (noting that x inverts a4):

[a2, x] = [a, x]a[a, x] = vav = v2b, [a4, x] = a−8 = [a2, x]a
2

[a2, x] = (v2b)a2

(v2b)

= v4b2

and so a8 = v−4b−2. Using the last result from the previous paragraph, we get

a4 = v−2b−1zη(v−2b−1zη)2i = v−2−4ib−1−2izη (i integer),

a8 = v−4b−2 = v−4−8ib−2−4i and so v−8ib−4i = 1. This gives i ≡ 0 (mod 2r−2)

since 〈v〉 ∩ 〈b〉 = 〈z〉 and v2r+1

b2r

= z2 = 1. We may set i = ζ2r−2 (ζ integer)
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and then

a4 = v−2b−1zη(v−2r

b−2r−1

)ζ = v−2b−1zηuζ, ζ = 0, 1.

Finally, we consider the general case, where G′ ∼= C2r × C2r+s+1 with r ≥ 2

and s ≥ 2.

Theorem 4.13: Let G be a 2-group with exactly one nonmetacyclic maximal

subgroup and d(G) = 2. Assume that G′ ∼= C2r × C2r+s+1 , r ≥ 2, s ≥ 2.

Then we have one of the following two possibilities (depending on Z(G) being

noncyclic or cyclic):

(a)

G = 〈a, x | a2r+2

= 1, r ≥ 2, [a, x] = v, [v, a] = b, v2r+s+1

= b2r+s

= [v, b] = 1,

s ≥ 2, b2r

= v−2r+1

, v2r+s

= z, a2r+1

= u, x2 ∈ W = 〈u, z〉 ∼= E4,

ba = b−1, bx = b−1, vx = v−1, a4 = v−2b−1w, w ∈ W 〉.

Here |G| = 22r+s+4, r ≥ 2, s ≥ 2, G′ = 〈b, v〉 ∼= C2r×C2r+s+1, 〈b〉∩〈v〉 ∼=

C2s , Z(G) = W = 〈u, z〉 ∼= E4, and Φ(G) = G′〈a2〉 is abelian.

(b)

G = 〈a, x | a2r+3

= 1, r ≥ 2, [a, x] = v, [v, a] = b, v2r+s+1

= b2r+s

= [v, b] = 1,

s ≥ 2, v2r+s

= a2r+2

= z, b2r

= v−2r+1

z, u = v−2r(1+2s−1)b−2r−1

,

ua = uz, x2 ∈ W = 〈u, z〉 ∼= E4, ba = b−1zδ, δ = 0, 1,

bx = b−1, vx = v−1zε, ε = 0, 1, ε = 0 if and only ifx2 ∈ 〈z〉,

a4 = v−2b−1uδzτ , τ = 0, 1〉.

Here |G| = 22r+s+4, r ≥ 2, s ≥ 2, G′ = 〈b, v〉 ∼= C2r×C2r+s+1, 〈b〉∩〈v〉 ∼=

C2s , Z(G) = 〈z〉 ∼= C2, Φ(G) = G′〈a2〉 , (Φ(G))′ = 〈zδ〉 and so Φ(G) is

either abelian (δ = 0) or minimal nonabelian (δ = 1).

Proof. We use freely Theorem 4.3 with m = 2 and Z(G) ≤ W (see Theorem

4.10). The element v = [a, x] ∈ G′ − R is of order 2r+s+1 and the element

b = [v, a] ∈ R−Φ(G′) is of order exp(R) = 2r+s. Since 〈b〉 covers R/〈v2〉 ∼= C2r ,

we have c = b2r

∈ 〈v2〉, o(c) = 2s and 〈v2〉/〈c〉 ∼= C2r . Set z = v2r+s

so that

〈z〉 = fr+s(G
′) ≤ Z(G) and 〈z〉 < 〈c〉. We know that the element x ∈ E − G′

(with x2 ∈ W = Ω1(G
′)) inverts each element in R and vx = v−1zε, where

ε = 0, 1 and ε = 1 if and only if x2 ∈ W − Z(G). We note that W ≤ Z(E)
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and so CG(W ) ≥ M = E〈a2〉. Also, b1 = [v, ax] = v−2b−1zε, bx = b−1 and

bx
1 = b−1

1 .

Set S = 〈c〉 and S∗= fr(G
′)= 〈v2r

〉 so that S∗ is normal in G and |S∗ : S|= 2.

We have

(v2r+s−1

)a = v2r+s−1

b2r+s−1

= v2r+s−1

z = v−2r+s−1

since v2r+s−1

is an element of order 4. This gives C〈v〉(a) = 〈z〉. Also, (v2r

)a =

(bv)2
r

= cv2r

. Since a4 ∈ R − Φ(G′) and 〈a4〉 covers R/〈v2〉, we have either

o(a) = 2r+2 with 〈a〉 ∩ 〈v〉 = {1} or o(a) = 2r+3 with 〈a〉 ∩ 〈v〉 = 〈z〉. On the

other hand, (ax)4 ∈ R−Φ(G′) and 〈(ax)4〉 covers R/〈v2〉 so that o(ax) = 2r+2+t,

where 2t = |〈ax〉 ∩ 〈v2〉|. Since |G| = 22r+s+4, G = 〈a〉〈ax〉 and o(a) ≤ 2r+3,

it follows that o(ax) = 2r+2+t ≥ 2r+s+1 and so t ≥ s − 1. By our assumption,

s ≥ 2 and so t ≥ 1, which implies that 〈ax〉 ≥ 〈z〉. If 〈a〉 ∩ 〈v〉 = {1}, then

〈a〉 ∩ 〈ax〉 = {1}, o(ax) = 2r+s+2 and therefore t = s. If 〈a〉 ∩ 〈v〉 = 〈z〉, then

〈a〉∩ 〈ax〉 = 〈z〉, o(a) = 2r+3 and so again t = s. In any case, 〈ax〉∩ 〈v2〉 = S =

〈c〉 and so ax centralizes c. But x inverts c and so ca = c−1. From (v2r

)a = cv2r

follows

(v2r

)a2

= ca(v2r

)a = c−1(cv2r

) = v2r

.

Hence a induces an involutory automorphism on S∗ = 〈v2r

〉 with ca = c−1,

where o(c) ≥ 4 and |S∗ : 〈c〉| = 2. This gives (v2r

)a = cv2r

= v−2r

zζ, ζ = 0, 1,

and so c = b2r

= v−2r+1

zζ, where o(v2r

) = 2s+1 ≥ 8.

We compute b2r

1 = (v−2b−1zε)2
r

= v−2r+1

v2r+1

zζ = zζ and so 〈b〉 ∩ 〈b1〉 =

〈zζ〉. From Theorem 4.3(g11) follows

b−1
1 ba

1 = (bba)−1 ∈ 〈zζ〉 and so ba = b−1zδ, ba
1 = b1z

δ, δ = 0, 1,

where ζ = 0 implies δ = 0. Also, (Φ(G))′ = 〈bba〉 = 〈zδ〉 and, therefore, Φ(G)

is either abelian or minimal nonabelian.

We get ba2

= (b−1zδ)a = b and (v2)a2

= v2 since v2 ∈ Φ(Φ(G)) ≤ Z(Φ(G)),

where Φ(G) = G′〈a2〉. Also we know that x acts invertingly on R and a4 ∈

R − Φ(G′) and all this gives:

[a2, x] = [a, x]a[a, x] = vav = (vb)v = v2b,

[a4, x] = a−8 = [a2, x]a
2

[a2, x] = (v2b)a2

(v2b) = (v2b)2 = v4b2,

and so a8 = v−4b−2. From this result also follows

(a8)2
r−1

= a2r+2

= v−2r+1

b−2r

= v−2r+1

v2r+1

zζ = zζ

and since 〈ax〉 ∩ 〈v〉 = 〈c〉 ∼= C2s , we get 〈ax〉 ∩ 〈a〉 = 〈zζ〉.
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Suppose ζ = 0. In that case b2r

= v−2r+1

, 〈b〉 ∩ 〈b1〉 = F ′ ∩ F ′
1 = {1},

δ = 0, o(b1) = 2r, a2r+1

= u ∈ Z(G) and so W = 〈u, z〉 = Z(G), ε = 0,

vx = v−1, ba = b−1, ba
1 = b1, and (Φ(G))′ = {1}. Since CG′(a) = 〈b1〉 × 〈z〉 and

b1 = v−2b−1, we get 〈a4〉 = 〈v2bzξ〉, ξ = 0, 1. Hence

a4 = v2bzξ(v2bzξ)2i = v2+4ib1+2izξ (i integer)

and so using a result from the previous paragraph, we get

a8 = v−4b−2 = v4+8ib2+4i, v8+8ib4+4i = 1, i + 1 ≡ 0 (mod 2r−2),

and we set i = −1 + t2r−2 (t an integer). This gives

a4 = v−2+t2r

b−1+t2r−1

zξ = v−2b−1(v2r

b2r−1

)tzξ

and since (v2r

b2r−1

)2 = v2r+1

b2r

= 1, we get (v2r

b2r−1

)tzξ = w ∈ W = Z(G).

Suppose ζ = 1. In that case we have 〈b〉∩〈b1〉 = F ′∩F ′
1 = 〈z〉, b2r

= v−2r+1

z,

b2r

1 = z, (Φ(G))′ = 〈zδ〉, δ = 0, 1, ba = b−1zδ, ba
1 = b1z

δ. We set u0 = b2r−1

1 c2s−2

so that u2
0 = b2r

1 c2s−1

= zz = 1 and

ua
0 = (b2r−1

1 c2s−2

)a = b2r−1

1 c−2s−2

= b2r−1

1 c2s−2

z = u0z,

where we have used the facts that a inverts c and a centralizes an element

of order 4 in 〈b1〉. Hence Z(G) = 〈z〉. This implies that a2r+2

= z and so

o(a) = 2r+3. Since c = v−2r+1

z and b1 = v−2b−1zε, where vx = v−1zε, ε = 0, 1

(and ε = 0 if and only if x2 ∈ 〈z〉), we get

u0 = (v−2b−1zε)2
r−1

(v−2r+1

z)2
s−2

= (v−2r(1+2s−1)b−2r−1

)z2s−2

= uz2s−2

,

where we have set u = v−2r(1+2s−1)b−2r−1

. We see that u2 = 1, ua = uz (since

ua
0 = u0z), and so W = 〈u, z〉 ∼= E4.

Since (b1u
δ)a = b1z

δ(uz)δ = b1u
δ, (b1u

δ)2
r

= b2r

1 = z, and C〈v〉(a) = 〈z〉, we

have CG′(a) = 〈b1u
δ〉 and so

〈a4〉 = 〈b1u
δ〉 = 〈v−2b−1zεuδ〉 = 〈v2buδ〉

since zε ∈ Φ(〈b1u
δ〉). This gives

a4 = v2buδ(v2buδ)2i = v2+4ib1+2iuδ (i integer),

and, therefore,

a8 = v−4b−2 = v4+8ib2+4i, v8+8ib4+4i = 1, and so i + 1 ≡ 0 (mod 2r−2).

We set i = −1 + t2r−2 (t an integer ) and compute:

1 = vt2r+1

bt2r

= (v2r+1

b2r

)t = (v2r+1

v−2r+1

z)t = zt
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and this forces t ≡ 0 (mod 2). Hence we may set t = 2τ (τ an integer) and

then i = −1 + τ2r−1 so that

a4 = v2−4+τ2r+1

b1−2+τ2r

uδ = v−2b−1uδ(v2r+1

b2r

)τ =

v−2b−1uδ(v2r+1

v−2r+1

z)τ = v−2b−1uδzτ , τ = 0, 1,

and we are done.

5. Nonmetacyclic 2-groups G = AB with A and B cyclic

The result of this section was also proved independently by Y. Berkovich.

Theorem 5.1: Let G = AB be a nonmetacyclic 2-group, where the subgroups

A and B are cyclic. If {U, V, M} is the set of maximal subgroups of G, where

A < U and B < V , then U and V are metacyclic and d(M) = 3. Hence, M

is a unique nonmetacyclic maximal subgroup of G and these groups have been

completely determined in Section 4.

Proof. Assume, for example, that U is nonmetacyclic. Then U/f2(U) is non-

metacyclic (Proposition 2.3) and so, in particular, |U/f2(U)| ≥ 24. We set A =

〈a〉 and B = 〈b〉 so that U = 〈a〉〈b2〉, |A : (A∩B)| ≥ 4, and |〈b2〉 : (A ∩B)| ≥ 4

(otherwise, U would be metacyclic). Since a4 ∈ f2(U), b8 ∈ f2(U), and

|U : 〈a4, b8〉| = 24 (noting that Proposition 2.12 implies that 〈a4, b8〉 = 〈a4〉〈b8〉),

we get f2(U) = 〈a4〉〈b8〉 and so |U : f2(U)| = 24. We want to investigate the

structure of G/f2(U) and so we may assume that f2(U) = {1}. In that case

G = 〈a〉〈b〉 is a group of order 25 with o(a) = 4, o(b) = 8, 〈a〉 ∩ 〈b〉 = {1}, and

G has a nonmetacyclic subgroup U = 〈a〉〈b2〉 of order 24 and exponent 4 which

is a product of two cyclic subgroups 〈a〉 and 〈b2〉 of order 4.

The subgroup U is nonabelian and U is not of maximal class (otherwise, U

would be metacyclic). By a result of O. Taussky (Proposition 2.4), |U ′| = 2

and so U is minimal nonabelian (Proposition 2.9). By Proposition 2.8, Z(U) =

Φ(U) = 〈a2〉 × 〈b4〉 ∼= E4 and U ′ = 〈a2b4〉 ≤ Z(G) since a2b4 is not a square in

U . But b4 ∈ Z(U) and so [b4, a] = 1 which gives b4 ∈ Z(G). Hence a2 ∈ Z(G)

and we get E4
∼= 〈a2, b4〉 ≤ Z(G). We have G′ ≤ Φ(G) = 〈a2〉 × 〈b2〉 ∼= C2 ×C4

and G′ ≥ U ′ = 〈a2b4〉. We have G′ > U ′ because in case G′ = U ′, G would be

minimal nonabelian and then U would be abelian, which is not the case. By

the result of O. Taussky (and noting that G is not of maximal class), we get

|G/G′| ≥ 8 and so |G′| = 4. Hence G′ is a maximal subgroup of Φ(G) and so
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G′ ≥ f1(Φ(G)) = 〈b4〉. Hence E4
∼= G′ = 〈a2, b4〉 ≤ Z(G) and so G is of class

2. By Proposition 2.14, G′ must be cyclic and this is our final contradiction.

We have proved that U and V are metacyclic. If d(M) ≤ 2, then Proposition

2.2 implies that G is metacyclic, a contradiction. Hence d(M) = 3 and M is a

unique nonmetacyclic maximal subgroup of G.
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